尽管SAT的绝大多数数学题对中国考生难以形成真正的威胁,但很多考生经常由于某一术语的生疏或心情紧张等因素而在一道数学题上“卡壳”。而在一些貌似简单的数学题目中,考生也往往会遭遇到各种各样的陷阱。实际上, SAT 的 3 个数学部分都是从最基本的题型开始,逐渐提高题目难度,而难题的分值其实并不比容易的题目更高。所以,考生在做某一个数学 Section 的题目时,应该先跳过那些一时难以解决的题目。切记不要把大量时间浪费在某一道题目上。
在实际解题过程中,考生可以采取以下策略:
一些数学题中经常出现相当难记的抽象变量,考生可以尝试设定一些具体的数字来代替它们,从而简化计算。参考下面的例题:
例 2 : If n Velcro tabs cost p dollars, then how many dollars would q Velcro tabs cost?
(A) np/q
(B) nq/p
(C) pq/n
(D) n/pq
(E) p/nq
我们可以设 n = 2 , p = 4 , q = 3 。原问题就变为——“ If 2 Velcro tabs cost $ 4, then how many dollars would 3 Velcro tabs cost? ”很容易得出答案是 $ 6 。然后考生只需把具体数字代入各选项中,看哪个选项可以得出 6 ,即得正确答案为 C 。
实际解题过程中,如果不止一个选项的计算结果为 6 ,我们可以再设定另外一组不同的数字代入。不失一般性,建议考生不要使用 0 和 1 来设定变量。