gre数学排列组合解题思路

2022-05-24 19:08:24

  在上篇文章,小编为大家准备了gre数学排列组合的基本内容介绍以及相关的公式,那么这次的这篇文章就来详细介绍一下gre数学排列组合的解题思路,跟着小编来看看吧!

  1.排列(permutation)

  从N个东东(有区别)中不重复(即取完后不再取)取出M个并作排列,共有几种方法:P(M,N)=N!/(N-M)!

  例如:从1-5中取出3个数不重复,问能组成几个三位数?

  解答:P(3,5)=5!/(5-3)!=5!/2!=5*4*3*2*1/(2*1)=5*4*3=60。

  也可以这样想从五个数中取出三个放三个固定位置,那么第一个位置可以放五个数中任一一个,所以有5种可能选法,那么第二个位置余下四个数中任一个4,那么第三个位置3,所以总共的排列为5*4*3=60。同理可知如果可以重复选(即取完后可再取),总共的排列是5*5*5=125。

  2.组合(combination)

  从某个纸箱或者盒子中(可以无区别)中不重复的(即取完后不再取)取出M个(不作排列,即不管取得次序先后),共有几种方法?C(M,N)=P(M,N)/P(M,M)=N!/(M-N)!/M!C(3,5)=P(3,5)/P(3,3)=5!/2!/3!=5*4*3/(1*2*3)=10。

  可以这样理解:组合与排列的区别就在于取出的M个作不作排列-即M的全排列P(M,M)=M!,那么他们之间关系就有先做组合再作M的全排列就得到了排列,所以C(M,N)*P(M,M)=P(M,N),由此可得组合公式,性质:C(M,N)=C( (N-M), N )。

  即C(3,5)=C( (5-2), 5 )=C(2,5) = 5!/3!/2!=10。

  以上就是小编为大家带来的gre数学排列组合的相关内容,希望对大家的备考有所帮助,更多精彩内容敬请关注


考试安排