-诱导公式
sin(-a)=-sin(a) cos(-a)=cos(a) sin(pi/2-a)=cos(a) cos(pi/2-a)=sin(a)
sin(pi/2+a)=cos(a) cos(pi/2+a)=-sin(a) sin(pi-a)=sin(a) cos(pi-a)=-cos(a)
sin(pi+a)=-sin(a) cos(pi+a)=-cos(a) tgA=tanA=sinA/cosA
-两角和与差的三角函数
sin(a+b)=sin(a)cos(b)+cos(α)sin(b) cos(a+b)=cos(a)cos(b)-sin(a)sin(b) sin(a-b)=sin(a)cos(b)-cos(a)sin(b) cos(a-b)=cos(a)cos(b)+sin(a)sin(b)
tan(a+b)=(tan(a)+tan(b))/(1-tan(a)tan(b)) tan(a-b)=(tan(a)-tan(b))/(1+tan(a)tan(b))
-三角函数和差化积公式
sin(a)+sin(b)=2sin((a+b)/2)cos((a-b)/2) sin(a)?sin(b)=2cos((a+b)/2)sin((a-b)/2)
cos(a)+cos(b)=2cos((a+b)/2)cos((a-b)/2) cos(a)-cos(b)=-2sin((a+b)/2)sin((a-b)/2)
-积化和差公式
sin(a)sin(b)=-1/2*[cos(a+b)-cos(a-b)] cos(a)cos(b)=1/2*[cos(a+b)+cos(a-b)]
sin(a)cos(b)=1/2*[sin(a+b)+sin(a-b)]
-二倍角公式
sin(2a)=2sin(a)cos(a) cos(2a)=cos^2(a)-sin^2(a)=2cos^2(a)-1=1-2sin^2(a)
-一元二次方程
一元二次方程的解-b+√(b2-4ac)/2a -b-b+√(b2-4ac)/2a
根与系数的关系 X1+X2=-b/a X1*X2=c/a注:韦达定理
判别式 b2-4a=0 注:方程有相等的两实根
b2-4ac>0 注:方程有一个实根
b2-4ac<0 注:方程有共轭复数根
-数列
某些数列前n项1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n*2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
以上就是为大家整理的:GRE数学公式大全,希望通过上述内容的学习,大家能够更好地备考接下来的