美国杂志《科学美国人》201703期刊封面:
美国杂志《科学美国人》201703期刊节选:
STARCHIPS AND LIGHT SAILS
The Team soon found that, though technically feasible, the plan would be an uphill climb. Even the easiest of the technologies, the StarChip, poses a lot of problems. It needs to be tiny—roughly gram-scale—yet able to collect and send back data, carry its own power supply and survive the long journey. Several years ago engineer Mason Peck’s group at Cornell University built what they call Sprites, smartphonelike chips that carry a light sensor, solar panels and a radio and weigh four grams each. The Star shot chips would be modeled on the Sprites but would weigh even less, around a gram, and carry four cameras apiece. Instead of heavy lenses for focusing, one option is to place a tiny difraction grating called a planar Fourier capture array over the light sensor to break the incoming light into wavelengths that can be reconstructed later by a computer to any focal depth. Other equipment suggested for the chip include a spectrograph to identify the chemistry of a planet’s atmosphere and a magnetometer to measure a star’s magnetic ield.
The chips would also need to send their pictures back over interstellar distances. Satellites currently use single-watt diode lasers to send information but over shorter distances: So far, Peck says, the longest distance has been from the moon, more than 100 million times closer than Alpha Centauri. To target Earth from the star, the laser’s aim would need to be extraordinarily precise. Yet during the four-year trip the signal will spread out and dilute until, when it reaches us, it will come in as just a few hundred photons. A possible solution would be to send the pictures back by relay, from one StarChip to a series of them lying at regular distances behind. Getting the information back to Earth, says Star shot Advisory Committee member Zac Manchester of Harvard, “is still a really hard problem.”