备考
例题1
If the average (arithmetic mean) of positive integers x, y, and z is 10, what is the greatest possible value of z ?
(A) 8 (B) 10 (C) 20 (D) 28 (E) 30
思路:
数据总和是10 * 3 = 30,
求z的最大可能值,就意味着x、y取最小可能值,
因为x、y都是正整数,所以x、y的最小可能值是1,
则z的greatest possible value = 30 - 1 - 1 = 28
答案:D
例题2
If 2, x, y, and z are different positive integers whose average (arithmetic mean) is 10, what is the greatest possible value of z?
(A) 10 (B) 24 (C) 34 (D) 36 (E) 40
思路:
数据总和是10 * 4 = 40,
求z的最大可能值,就意味着x、y取最小可能值,
因为x、y都是正整数,所以x、y的最小可能值是1、3(因为题目要求不能重复),
则z的greatest possible value = 40 - 1 - 2 - 3 = 34
答案:C
例题3
Three boxes of supplies have an average (arithmetic mean) weight of 7 kilograms and a median weight of 9 kilograms. What is the maximum possible weight, in kilograms, of the lightest box?
(A) 1 (B) 2 (C) 3 (D) 4 (E) 5
思路:
设三个箱子按重量从小到大分别是:x、y(9)、z
数据总和是7 * 3 = 21,
求x的最大可能值,就意味着z取最小可能值,
z的最小可能值是9(不可能小于中位数),
则x的最大可能值 = 21 - 9 - 9 = 3
答案:C
例题4
(OG17的206题,OG18的211题)
Seven pieces of rope have an average (arithmetic mean) length of 68 centimeters and a median length of 84 centimeters. If the length of the longest piece of rope is 14 centimeters more than 4 times the length of the shortest piece of rope, what is the maximum possible length, in centimeters, of the longest piece of rope?
(A) 82 (B) 118 (C) 120 (D) 134 (E) 152
思路:
七根绳子的总长度 = 68*7 = 476
根据题目,设7根绳子按长度从小到大分别是:x、a、b、84、d、e、4x+14
求4x+14的最大可能值,就意味着a、b、d、e取最小可能值,
a的最小可能值是x,b的最小可能值是x,d的最小可能值是84,e的最小可能值是84
则4x + 14的最大可能值:4x + 14 = 476 – x – x – x – 84 – 84 – 84
解得x = 30
则4x + 14 = 134
答案:D
以上就是关于“GMAT数学OG例题解析”的内容,希望通过本篇文章的学习,对大家的考试有更好的帮助,也希望大家能够在考试中取得优异的成绩,早日实现留学梦想!更多精彩内容,敬请关注本频道的更新!