!本文
一、知识要点:
1.一元二次方程ax2+bx+c=0(a≠0)的根的判别式Δ=b2-4ac。
定理1 ax^2+bx+c=0(a≠0)中,Δ>0方程有两个不等实数根
定理2 ax^2+bx+c=0(a≠0)中,Δ=0方程有两个相等实数根
定理3 ax^2+bx+c=0(a≠0)中,Δ<0方程没有实数根
2、根的判别式逆用(注意:根据课本“反过来也成立”)得到三个定理。
定理4 ax^2+bx+c=0(a≠0)中,方程有两个不等实数根Δ>0
定理5 ax^2+bx+c=0(a≠0)中,方程有两个相等实数根Δ=0
定理6 ax^2+bx+c=0(a≠0)中,方程没有实数根Δ<0
注意:(1)再次强调:根的判别式是指Δ=b2-4ac。(2)使用判别式之前一定要先把方程变化为一般形式,以便正确找出a、b、c的值。(3)如果说方程有实数根,即应当包括有两个不等实根或有两相等实根两种情况,此时b2-4ac≥0切勿丢掉等号。(4)根的判别式b2-4ac的使用条件,是在一元二次方程中,而非别的方程中,因此,要注意隐含条件a≠0
二.根的判别式有以下应用:
不解一元二次方程,判断根的情况。
例1. 不解方程,判断下列方程的根的情况:
(2)ax^2+bx=0(a≠0)
解:
(2)∵a≠0, ∴方程是一元二次方程,此方程是缺少常数项的不完全的一元二次方程,将常数项视为零,
∵Δ=(-b)2-4·a·
∵无论b取任何关数,b2均为非负数,
∴Δ≥0, 故方程有两个实数根。
根据方程根的情况,确定待定系数的取值范围。
例2.k的何值时?关于x的一元二次方程x2-4x+k-5=0(1)有两个不相等的实数根;(2)有两个相等的实数根;(3)没有实数根;
分析:由判别式定理的逆定理可知(1)Δ>0;(2)Δ=0;(3)Δ<0;
解:Δ=(-4)2-4·
(1)∵方程有两个不相等的实数根,
∴Δ>0,即36-4k>0.解得k<
(2)∵[!--empirenews.page--]方程有两个不相等的实数根,
∴Δ=0,即36-4k=0.解得
(3)∵方程有两个不相等的实数根,
∴Δ<0,即36-4k<0.解得
证明字母系数方程有实数根或无实数根。
例3.求证方程(m2+1)x2-2mx+(m2+4)=0没有实数根。
分析:先求出关于x的方程的根的判别式,然后只需说明判别式是一个负数,就证明了该方程没有实数根。
证明: Δ=-4(m2+2)2
∵不论m取任何实数
∴ -4(m2+2)2<0, 即Δ
∴关于x的方程(m2+1)x2-2mx+(m2+4)=0没有实数根。
小结:由上面的证明认清证明的格式归纳出证明的步骤:
(1)计算Δ
(2)用配方法将Δ恒等变形
(3)判断Δ的符号
(4)结论.其中难点是Δ的恒等变形,一般情况下配方后变形后为形如:a2,a2+2,(a2+2)2, -a2, -(a2+2)2的代数式,从而判定正负,非负等情况。
应用根的判别式判断三角形的形状。
例4.已知:a、b、c为ΔABC的三边,当m>0时,关于x的方程c(x2+m)+b(x2-m)-2[!--empirenews.page--]ax=0有两个相等的实数根。求证ΔABC为RtΔ。
(提示:答案为ΔABC为RtΔ)
判断当字母的值为何值时,二次三项是完全平方式
例5、(1)若关于a的二次三项式16a2+ka+25是一个完全平方式则k的值可能是( )
(2)若关于a的二次三项式ka2+4a+1是一个完全平方式则k的值可能是()
分析:可以令二次三项等于0,若二次三项是完全平方式,则方程有两个相等的实数根。即Δ
解:(1)
∵方程有两个相等的实数根,
∴Δ=k2-4×16×
∴k=+40或者
(2)
∵方程有两个相等的实数根,∴Δ=16-4k=0 ∴
可以判断抛物线与直线有无公共点
例6:当m取什么值时,抛物线与直线y=x+2m只有一个公共点?
解:列方程组消去y并整理得
,∵抛物线与直线只有一个交点,
∴Δ=0,即 4m+5=0 ∴
说明:直线与抛物线的交点问题也可归纳为方程组的解的问题。
可以判断抛物线与x轴有几个交点
分析:抛物线y=ax2+bx+c与x轴的交点 (1)当y=0时,即有ax2+bx+c=0,要求x的值,需解一元二次方程ax2+bx+c=0。可见,抛物线y=ax2+bx+c与x轴的交点的个数是由对应的一元二次方程ax2+bx+c=0的根的情况确定的,而决定一元二次方程ax[!--empirenews.page--]2+bx+c=0的根的情况的,是它的判别式的符号,因此抛物线与x轴的交点有如下三种情形:
当时,抛物线与x轴有两个交点,若此时一元二次方程ax2+bx+c=0的两根为x1、x2,则抛物线与x轴的两个交点坐标为(x1,0)(x2,0)。
当时,抛物线与x轴有唯一交点,此时的交点就是抛物线的顶点,其坐标是()。
当 时,抛物线与x轴没有交点。
例7、判定下列抛物线与x轴交点的个数:
(1) (2) (3)
解:(1)Δ=16-12=4>0 ∴抛物线与x轴有两个交点。
(2)Δ=36-36=0 ∴抛物线与x轴只有一个公共点。
(3)Δ=4-16=-12<0 ∴抛物线与x轴无公共点。
例8、已知抛物线
(1)当m取什么值时,抛物线和x轴有两个公共点?
(2)当m取什么值时,抛物线和x轴只有一个公共点?并求出这个公共点的坐标。
(3)当[!--empirenews.page--]m取什么值时,抛物线和x轴没有公共点?
解:令y=0,则 Δ=
(1)∵抛物线与x轴有两个公共点, ∴Δ>0,即 – 4m+8>0 ∴
(2)∵抛物线和x轴只有一个公共点, ∴Δ=0,即 –4m+8=0 ∴
当m=2时,方程可化为,解得x1=x2= -1,∴抛物线与x轴公共点坐标为(-1,0)。
(3)∵抛物线与x轴没有公共点, ∴Δ<0,即 -4m+8<0, ∴
∴当m>2时,抛物线与x轴没有公共点。
利用根的判别式解有关抛物线(Δ>0)与x轴两交点间的距离的问题
分析:抛物线 (Δ>0)与x轴两交点间的距离,是对应的一元二次方程 [!--empirenews.page--]的两根差的绝对值。它有以下表示方法:
例9: 求当a为何值时?二次函数 图象与x轴的两个交点间的距离是3。
(参考:图象与x轴两个交点间的距离是3)
希望以上为大家分享的GMAT数学考点一元二次方程知识点,能够对大家更好的进行GMAT数学的备考有帮助。