数据科学入门-选Python还是R(上)

发布日期:2022-06-16 05:15:42 阅读:5974 作者:吴慧晶

本文转自互联网  ,请同学们参考学习。

 

我是德勤的数据科学家主管,多年来我一直在使用Python和R语言,并且与Python社区密切合作了15年。本文是我对这两种语言的一些个人看法。


第三种选择

                                             

针对这个问题,Studio的首席数据科学家Htley Wickham认为,比起在二者中选其一,更好的选择是让两种语言合作。因此,这也是我提到的第三种选择,我在文本最后部分会探讨。

 

如何比较R和Python

 

对于这两种语言,有以下几点值得进行比较:

· 历史:

R和Python的发展历史明显不同,同时有交错的部分。

· 用户群体:

包含许多复杂的社会学人类学因素。

· 性能:

详细比较以及为何难以比较。

· 第三方支持:

模块、代码库、可视化、存储库、组织和开发环境。

· 用例:

根据具体任务和工作类型有不同的选择。

· 是否能同时使用:

在Python中使用R,在R中使用Python。

· 预测:

内部测试。

· 企业和个人偏好:

揭晓最终答案。


历史

 

简史:

ABC语言 - > Python 问世(1989年由Guido van Rossum创立) - > Python 2(2000年) - > Python 3(2008年)

Fortan语言 - > S语言(贝尔实验室) - > R语言问世(1991年由Ross Ihaka和Robert Gentleman创立) - > R 1.0.0(2000年) - > R 3.0.2(2013年)

 

用户群体


在比较Python与R的使用群体时,要注意:

只有50%的Python用户在同时使用R。

假设使用R语言的程序员都用R进行相关“科学和数字”研究。可以确定无论程序员的水平如何,这种统计分布都是真实。

这里回到第二个问题,有哪些用户群体。整个科学和数字社区包含几个子群体,当中存在一些重叠。

 


使用Python或R语言的子群体:

· 深度学习

· 机器学习

· 高级分析

· 预测分析

· 统计

· 探索和数据分析

· 学术科研

· 大量计算研究领域

 

虽然每个领域几乎都服务于特定群体,但在统计和探索等方面,使用R语言更为普遍。在不久之前进行数据探索时,比起Python,R语言花的时间更少,而且使用Python还需要花时间进行安装。

 

这一切都被称为Jupyter Notebooks和Anaconda的颠覆性技术所改变。

 

Jupyter Notebook:增加了在浏览器中编写Python和R代码的能力;

 

Anaconda:能够轻松安装和管理Python和R。

 

现在,你可以在友好的环境中启动和运行Python或R,提供开箱即用的报告和分析,这两项技术消除了完成任务和选择喜欢语言间的障碍。Python现在能以独立于平台的方式打包,并且更快地提供快速简单的分析。

 

社区中影响语言选择的另一个因素是“开源”。不仅仅是开源的库,还有协作社区对开源的影响。讽刺的是,Tensorflow和GNU Scientific Library等开源软件(分别是Apache和GPL)都与Python和R绑定。虽然使用R语言的用户很多,但使用Python的用户中有很多纯粹的Python支持者。另一方面,更多的企业使用R语言,特别是那些有统计学背景的。

 

最后,关于社区和协作,Github对Python的支持更多。如果看到最近热门的Python包,会发现Tensorflow等项目有超过3.5万的用户收藏。但看到R的热门软件包,Shiny、Stan等的收藏量则低于2千。

 

性能


这方面不容易进行比较。

 

原因是需要测试的指标和情况太多。很难在任何一个特定硬件上测试。有些操作通过其中一种语言优化,而不是另一种。